A Fast and Verified Algorithm for Proving Store-and-Forward Networks Deadlock-Free

ثبت نشده
چکیده

Deadlocks are an important issue in the design of interconnection networks. A successful approach is to restrict the routing function such that it satisfies a necessary and sufficient condition for deadlock-free routing. Typically, such a condition states that some (extended) dependency graph must be acyclic. Defining and proving such a condition is complex. Proving that a routing function satisfies a condition can be complex as well. In this paper we present the first algorithm that automatically proves routing functions deadlock-free for store-and-forward networks. The time complexity of our algorithm is linear in the size of the resource dependency graph. The algorithm checks a variation of Duato’s condition for adaptive routing. The condition and the algorithm have been formalized in the logic of the ACL2 interactive theorem prover. The correctness of our algorithm w.r.t. the condition is formally checked using ACL2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast and Verified Algorithm for Proving Store-and-Forward Networks Deadlock-Free

Deadlocks are an important issue in the design of interconnection networks. A successful approach is to restrict the routing function such that it satisfies a necessary and sufficient condition for deadlock-free routing. Typically, such a condition states that some (extended) dependency graph must be acyclic. Defining and proving such a condition is complex. Proving that a routing function sati...

متن کامل

A Fast and Verified Algorithm for Proving Store-and-Forward Networks Deadlock-Free

Deadlocks are an important issue in the design of interconnection networks. A successful approach is to restrict the routing function such that it satisfies a necessary and sufficient condition for deadlock-free routing. Typically, such a condition states that some (extended) dependency graph must be acyclic. Defining and proving such a condition is complex. Proving that a routing function sati...

متن کامل

A Fast and Verified Algorithm for Proving Store-and-Forward Networks Deadlock-Free

Deadlocks are an important issue in the design of interconnection networks. A successful approach is to restrict the routing function such that it satisfies a necessary and sufficient condition for deadlock-free routing. Typically, such a condition states that some (extended) dependency graph must be acyclic. Defining and proving such a condition is complex. Proving that a routing function sati...

متن کامل

A Necessary and Sufficient Condition for Deadlock-Free Routing in Cut-Through and Store-and-Forward Networks

This paper develops the theoretical background for the design of deadlock-free adaptive routing algorithms for virtual cut-through and store-and-forward switching. This theory is valid for networks using either central buffers or edge buffers. Some basic definitions and three theorems are proposed, developing conditions to verify that an adaptive algorithm is deadlock-free, even when there are ...

متن کامل

A Framework for Designing Deadlock-Free Wormhole Routing Algorithms

This paper presents a framework to design fully-adaptive, deadlock-free wormhole algorithms for a variety of network topologies. The main theoretical contributions are (a) design of new wormhole algorithms using store-and-forward algorithms, (b) a sufficient condition for deadlock free routing by the wormhole algorithms so designed, and (c) a sufficient condition for deadlock free routing by th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017